Exponential Gleitenden Durchschnitt Excel Download
Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der vorherigen 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. MetaTrader 4 - Indikatoren Moving Averages, MA - Indikator für MetaTrader 4 Der Moving Average Technische Indikator zeigt den mittleren Instrumentenpreis für einen bestimmten Zeitraum an. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Simple (auch Arithmetik genannt), Exponential, Smoothed und Linear Weighted. Bewegungsdurchschnitte können für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Wenn wir von einem einfachen gleitenden Durchschnitt sprechen, sind alle Preise des fraglichen Zeitraums gleich wertig. Exponentielle und linear gewichtete Bewegungsdurchschnitte legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt steigt, erscheint ein Kaufsignal, wenn der Preis unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Simple Moving Average (SMA) Ein einfacher, dh arithmetisch gleitender Durchschnitt wird berechnet, indem die Preise des Instrumentenschlusses über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. SMA SUM (CLOSE, N) N wobei: N die Anzahl der Berechnungsperioden ist. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird berechnet, indem der gleitende Durchschnitt eines bestimmten Anteils des aktuellen Schlusskurses auf den vorherigen Wert addiert wird. Bei exponentiell geglätteten gleitenden Durchschnitten sind die neuesten Preise von mehr Wert. P-Prozentsatz des exponentiellen gleitenden Durchschnitts wird wie folgt aussehen: Wo: CLOSE (i) der Preis des laufenden Periodenabschlusses EMA (i-1) Exponentiell bewegender Durchschnitt des vorherigen Periodenabschlusses P der Prozentsatz der Verwendung des Preiswerts. Gleitender gleitender Mittelwert (SMMA) Der erste Wert dieses geglätteten gleitenden Mittelwertes wird als einfacher gleitender Mittelwert (SMA) berechnet: SUM1 SUM (CLOSE, N) Der zweite und nachfolgende gleitende Mittelwert wird gemäß dieser Formel berechnet: wobei: SUM1 die ist Summe der Schlusskurse für N Perioden SMMA1 ist der geglättete gleitende Durchschnitt des ersten Balkens SMMA (i) ist der geglättete gleitende Durchschnitt des aktuellen Balkens (mit Ausnahme des ersten) CLOSE (i) der aktuelle Schlusskurs N ist Glättungszeitraum. Linearer gewichteter gleitender Durchschnitt (LWMA) Bei gewichteten gleitenden Mittelwerten sind die letzten Daten von größerem Wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird. (I, N) SUM (i, N) wobei: SUM (i, N) die Gesamtsumme der Gewichtskoeffizienten ist. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Mittelwerten im Diagramm: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Smoothed Moving Average (SMMA) Linearer gewichteter Moving Average (LWMA) Bewegte Mittelwerte Motiviert per E-Mail von Robert B. Ich erhalte Diese E-Mail fragt nach dem Hull Moving Average (HMA) und. Und du hast noch nie davon gehört. Uh. Stimmt. In der Tat, wenn ich gegoogelt entdeckte ich viele gleitende Durchschnitte, die Id noch nie gehört, wie: Zero Lag Exponential Moving Average Wilder Gleitender Durchschnitt Least Square Gleitender Durchschnitt Dreieckig Gleitender Durchschnitt Adaptiver Gleitender Durchschnitt Jurik Gleitender Durchschnitt. Also dachte ich wed reden über bewegte Durchschnitte und. Havent Sie getan, dass vor, wie hier und hier und hier und hier und. Ja, ja, aber das war, bevor ich von all diesen anderen bewegenden Durchschnitten wusste. Tatsächlich waren die einzigen, mit denen ich spielte, diese, wobei P 1. P 2. P n die letzten n Aktienkurse sind (wobei P n der jüngste ist). Ein einfacher gleitender Mittelwert (SMA) (P 1 P 2, P n) K mit K n. Gewichteter gleitender Mittelwert (WMA) (P 1 2 P 2 3 P 3 n P n) K, wobei K (12 n) n (n 1) 2 ist. Exponential Moving Average (EMA) (P n 945 P n-1 945 2 P n-2 945 3 P n-3) K wobei K 1 945945 2 ist. 1 (1-945). Whoa Ive nie gesehen, dass EMA Formel vor. Ich habe immer thoguht es war. Yeah, seine normalerweise anders geschrieben, aber ich wollte zeigen, dass diese drei ähnliche Rezepte haben. (Siehe das EMA-Material hier und hier.) Tatsächlich sehen sie alle folgendermaßen aus: Wenn alle Ps gleich sind, z. B. Po, dann ist der gleitende Durchschnitt gleich Po. Und das ist der Weg, den jeder sich selbst respektierende Durchschnitt verhalten sollte. Also, was ist am besten definieren am besten. Hier sind ein paar bewegte Durchschnitte, die versuchen, eine Reihe von Aktienkursen, die in einer sinusoidalen Mode variieren verfolgen: Aktienkurse, die eine Sinuskurve folgen Wo haben Sie eine Aktie wie finden Sie beachten, dass die häufig verwendete gleitende Mittelwerte (SMA, WMA Und EMA) ihr Maximum später als die Sinuskurve erreichen. Thats lag und. Aber was ist mit dem HMA-Kerl. Er sieht ziemlich gut aus, und das ist es, worüber wir sprechen wollen. Tatsächlich. Und was ist das 6 in HMA (6) und ich sehe etwas namens MMA (36) und. Geduld. Hull Moving Average Wir beginnen mit der Berechnung des 16-Tage-Weighted Moving Average (WMA) wie folgt: 1 WMA (16) (P 1 2 P 2 3 P 3 16 P n) K mit K 12 16 136. Obwohl es schön ist Und smoooth, itll haben einen lag größer als wed wie: Also schauen wir uns die 8-Tage-WMA an: Ich mag es ja, folgt es den Preisvariationen ganz schön. Aber theres mehr. Während WMA (8) auf neuere Preise schaut, hat es immer noch eine Verzögerung, so dass wir sehen, wie viel die WMA hat sich geändert, wenn von 8-Tage bis 16-Tage. Dieser Unterschied würde so aussehen: In gewissem Sinne gibt dieser Unterschied einige Hinweise darauf, wie sich WMA verändert. (8) - WMA (8) WMA (8) - WMA (16) 2 WMA (8) - WMA (16) addieren wir diese Änderung zu unserer früheren WMA (8). MMA Warum nennen es MMA Ich stottern. Wie auch immer, MMA (16) würde so aussehen: Ill nehmen Sie Geduld. es gibt mehr. Jetzt stellen wir die magische Transformation vor und bekommen. Ta-DUM Das ist Rumpf Ja. Wie ich es verstehe Aber was ist das magische Ritual Nachdem wir eine Serie von MMAs mit den 8-Tage - und 16-Tage-gewichteten gleitenden Durchschnitten erzeugt haben, starren wir aufmerksam auf diese Sequenz von Zahlen. Dann berechnen wir die WMA in den letzten 4 Tagen. Das ergibt den Hull Moving Average, den wir HMA nennen (4). Huh 16 Tage dann 8 Tage dann 4 Tage. Werfen Sie eine Münze zu sehen, wie viele. Sie wählen eine Anzahl von Tagen aus, wie n 16. Dann schauen Sie sich WMA (n) und WMA (n2) an und berechnen MMA 2 WMA (n2) - WMA (n). (In unserem Beispiel, das ist 2 WMA (8) - WMA (16).) Dann berechnen Sie WMA (sqrt (n)) mit nur den letzten sqrt (n) Zahlen aus der MMA-Serie (In unserem Beispiel thatd zu berechnen Ein WMA (4), unter Verwendung der MMA-Reihe.) Und für das lustige SINE Diagramm Howd es tun So wheres das Spreadsheet Im, das noch an ihm arbeitet: MA-stuff. xls Sein interessant, zu sehen, wie die verschiedenen bewegenden Durchschnitte auf Spitzen reagieren: Ist HMA wirklich ein gewichteter gleitender Durchschnitt Nun können wir sehen: Wir haben: MMA 2 WMA (8) - WMA (16) 2 (P 1 2 P 2 3 P 3 8 P n) 36 - (P 1 2 P 2 3 P 3 16 P n) 136 oder MMA 2 (136) - (1136) P 1 2 P 2 8 P 8 - (1136) 9 P 9 10 P 10. 16 P 16 Aus gesundheitlichen Gründen schreibe dies bitte so: (1136) K für K 1, 2, 8 und wk - (1136) K, wobei wk 2 (136) - (1136) K für K 1, 2, 8 und wk - (1136) K ist Für K 9, 10. 16. Dann haben wir das magische Quadratwurzelritual (wobei sqrt (16) 4) (wir erinnern uns, dass P 16 der jüngste Wert ist) HMA die 4-tägige WMA der oben genannten MMAs (W & sub1; P & sub1; w & sub2; P & sub2 ;. (W & sub1; P & sub1; & sub1; P & sub1; & sub2; P & sub1; & sub6; W 16 P 13) 10 (unter Hinweis darauf, dass 1234 10). Huh P 0. P -1. Was. Die MMA (16) verwendet die letzten 16 Tage, zurück zum Preis rufen P 1 an. Wenn wir den 4-Tage-gewogenen Mittelwert von ihnen Thar-MMA berechnen, gut mit gestern s MMA (und das geht zurück 1 Tag vor P 1) und am Tag davor, die MMA geht zurück zu 2 Tage vor P 1 und den Tag Vor, dass. Okay, so dass Sie rufen sie Preise P 0. P -1 etc. etc. Du hast es. So ein 16-Tage-HMA verwendet tatsächlich Informationen, die zurück geht mehr als 16 Tage, rechts Du hast es. Aber es gibt negative Gewichte für sie alte Preise Ist das legal Der Beweis ist in der. Ja ja. Der Beweis ist im Pudding. Also, was macht die Tabelle so weit es sieht so aus: (Klicken Sie auf das Bild zum herunterladen.) Sie können wählen, eine SINE-Serie oder eine RANDOM Reihe von Aktienkursen. Für letztere, jedes Mal, wenn Sie auf eine Schaltfläche klicken, erhalten Sie eine andere Menge von Preisen. Dann können Sie die Anzahl der Tage: das ist unser n. (Beispielsweise haben wir für unser Beispiel n 16 verwendet.) Wenn Sie sich für die SINE-Serie entscheiden, können Sie Spikes einführen und diese entlang des Diagramms verschieben. so was . Beachten Sie, dass wir mit n 16 und n 36 (im Bild der Tabellenkalkulation) n2 und sqrt (n) beide ganze Zahlen verwenden. Wenn Sie so etwas wie n 15 verwenden, verwendet die Kalkulationstabelle den INT-eger-Teil von n2 und sqrt (n), nämlich 7 und 3. So ist der Hull Moving Average die beste Definition am besten. Was ist mit dem Jurik Durchschnitt ich weiß nichts davon. Es proprietär und du musst zahlen, um es zu benutzen. Jedoch können wir mit gleitenden Durchschnitten spielen. Ein anderer gleitender Durchschnitt Angenommen, anstelle des gewichteten gleitenden Durchschnitts (wobei die Gewichte proportional zu 1, 2, 3 sind). Wir verwenden das magische Hull-Ritual mit dem Exponential Moving Average. Das heißt, wir betrachten: MAg 2 EMA (n2) - EMA (n) MAg Ja, das ist M oving A verage g immick oder M oving A veree g eneralized or M oving A verage g rand or. Oder M oving A verage g ummy Lohnaufmerksamkeit Wir wählen unsere Lieblingszahl von Tagen, wie n 16, und berechnen MAg (n, 945, k) 945 EMA (nk) - (1-945) EMA (n). Wir können mit 945 und k spielen und sehen, was wir bekommen: Zum Beispiel, hier sind ein paar MAgs (wo waren 16 Tage bleiben, aber die Werte von 945 und k): MAg (16) 2 EMA (4) - EMA (16) MAE (16) 1.5 EMA (5) - 0.5 EMA (16) Beachten Sie, dass wir, wenn wir k 3 wählen, nk 163 5.333 erhalten, die wir in einfach und einfach ändern. Warum dont Sie Stick mit Hulls Entscheidungen: 945 2 und k 2 Gute Idee. Mi bekommen diese: MAG (16) 2 EMA (8) - EMA (16) Sieht aus wie die Tabelle mit 945 1,5 und k 3. Es tut, nicht Sie haben goof. Wieder Möglich. Also, was über das Quadrat-Root-Ritual Ich lasse das als Übung. Für Sie Okay, beim Spielen mit dieser MAg Sache finde ich, dass Hulls k 2 ziemlich gut funktioniert. So gut bleiben. Allerdings bekommen wir oft einen hübschen Durchschnitt, wenn wir nur ein kleines Stück der Änderung hinzufügen: EMA (n2) - EMA (n). In der Tat, fügen Sie nur einen Bruchteil 946 dieser Änderung. Dies ergibt: MAg (n, 946) EMA (n2) 946 EMA (n & sub2;) - EMA (n). Das heißt, wählen wir 946 0,5 oder vielleicht nur 946 0,25 oder was auch immer und verwenden Sie: Wenn wir zum Beispiel vergleichen unsere gaggle von gleitenden Durchschnitten, wie sie eine STEP-Funktion verfolgen, erhalten wir diese, wo wir hinzufügen (für MAg) nur 946 12 von der Wechsel. Ja, aber was ist der beste Wert der Beta. Bestimmen Sie am besten: Beachten Sie, dass Beta 1 die Option Hull ist. Außer, dass EMAs anstelle von WMAs verwendet wurden. Und Sie lassen das Quadrat-Wurzel-Ding. Äh, ja. Ich habe es vergessen. Hinweis . Die Kalkulationstabelle ändert sich von Stunde zu Stunde. Es sieht jetzt wie folgt aus Etwas zum Spielen Ich habe mir eine Tabelle, die so aussieht. Klicken Sie auf das Bild zum herunterladen. Sie wählen eine Aktie und klicken Sie auf eine Schaltfläche und erhalten ein Jahr im Wert von Tagespreisen. Sie wählen entweder HMA oder MAg, ändern die Anzahl der Tage und, für MAg, den Parameter, und sehen, wenn Sie KAUFEN VERKAUFEN sollten. Wenn Basierend auf welchen Kriterien Wenn der gleitende Durchschnitt in den letzten 2 Tagen DOWN x von seinem Maximum abweicht, kaufst du. (In dem Beispiel, x 1,0) Wenn seine UP y von seinem Minimum in den letzten 2 Tagen, Sie SELL. (Im Beispiel y 1.5) Sie können die Werte von x und y ändern. Taugt es etwas. Diese Kriterien Ich sagte, es war etwas zu spielen. Theres diese andere Glättung Technik genannt Hodrick-Prescott Filter. Mit Hilfe von Ron McEwan, ist es jetzt in diesem Kalkulationstabelle enthalten: Ist es ein gutes Spiel mit ihm. Sie werden bemerken, dass theres ein Parameter, den Sie in Zelle M3 ändern können. Und KAUF und SELL-Signale.
Comments
Post a Comment